Question Bank for Thermodynamics & Statistical Mechanics

(As per CBCS Syllabus)

Part A (1 mark each)

1-	- The total number of accessible states of 'N' non interacting						
	_	cles of spin ½ is					
2-	The	dimension of phase space of 10	rigid (diatomic molecules is			
		·					
3-	- A monoatomic ideal gas at 17 degree C is adiabatically compressed to 1/8 of its original volume. The temperature afte compression is,						
		·	(c)	17 degree C			
		-200.5 degree C	(d)	17 degree C 887 degree C			
4-	- For which gas ratio of specific heats (C_P/C_v) will be largest,						
		Monoatomic		Triatomic			
	(b)	Diatomic	(d)	Hexa-atomic			
5-	Effic	ciency of a perfectly reversible (Carno	t) heat engine			
	oper	ating between absolute temperat	ure T	and zero is equal to,			
		·					
6-	The	specific heat at constant volume	per n	nolecule of a gas of			
	diatomic molecules at high temperature is,						
	(a)	$8K_B$	(c)	$4.5~\mathrm{K_B}$			
	(b)	$3.5 K_B$	(d)	$3K_B$			
7-	A sy	stem has energy level E ₀ , 2E ₀ , 3	E ₀ ,	,where the			
excited states are triply degenerate 4 non-interacting Boso							
	placed in the systems. If total energy of these Bosons is $5E_0$ the						
	number of microstates is,						
	(a)	2	(c)				
	(b)	3	(d)	5			
8-	The phase space trajectory of a free particle bouncing between						
	two	hard walls elastically in one dimension is a,					
	(a)	Straight line	(c)	rectangle			
	(b)	Parabola	(d)	circle			

9- Two solid spheres A and B have same emissive	J					
is 4 times the radius of B and temperature of A	is twice the					
temperature of B. The ratio of the rate of heat r	radiated from A to					
B is						
Consider a system of 3 fermions, which of	can occupy any of					
the 4 available energy states with equal probab	ility. The entropy					
of the system is,						
· · ·	$3K_B ln2$					
` / -	$3K_B ln4$					
1- At a given temperature T, the average en	•• •					
of non-interacting gas of 2 dimensional classic	al harmonic					
oscillator isK _B T.	_					
The energy dependence of the density of						
dimensional non-relativistic electron gas is giv						
CE ⁿ , where C is a constant. The value of 'n' is	·					
The pressure of a non-relativistic free Fer	The pressure of a non-relativistic free Fermi gas in 3					
dimension depends, at T=0 and the density of s	state of fermions					
'n' as,						
(a) $n^{5/3}$ (c)	$n^{2/3}$					
(b) $n^{1/3}$ (d)	$n^{2/3}$ $n^{4/3}$					
4- For a system of independent non-interact	ing one					
dimensional oscillators, the value of the free er	nensional oscillators, the value of the free energy per					
oscillator, in the Limit $T\rightarrow 0$ is						
In two dimensions two metals A and B, h	nave a number					
density of free electrons in the ratio $n_A : n_B =$	1:2. Ratio of					
there Fermi energy is						
Part B (2 marks each)						
- In a first order phase transition at the transition	temperature,					
specific heat of the system,						

Diverges and it's entropy remains same

(a)

	(b)	Diverges and it's entropy has finite discontinuity				
	(c)	Remains unchanged and it's entropy has finite				
		discontinuity.				
	(d)	Has finite discontinuity and it's entropy diverges.				
2-		average speed of molecules in a gas at 20 degree C is v. At temperature it will be 2v. 899 degree C				
	(b)	586 degree C				
	(c)	80 degree C				
	(d)	40 degree C				
3-		n a crystal melts into liquid at constant pressure which of ollowing quantities changes continuously at the phase ition. Gibbs free energy				
	(b)	Volume				
	(c)	Internal energy				
	(d)	Entropy				
4-	In Bo	ose-Einstein condensation, the particles, Have strong inter-particle attraction				
	(b)	Condense in real space				
	(c)	Have overlapping wave function				
	(d)	Have large and positive chemical potential				
	distri Black radiu enclo	he number of ways in which 5 identical Bosons can be stributed in 4 states is lack body radiation is enclosed inside a spherical cavity of dius R at temperature T. What would be the temperature of the aclosure if the radius expands to 2R adiabatically. a) T/2 (b) 2T (c) 3T (d) 4T				
	(a)	1/2 (0) 21 (C) 31 (u) 41				

- 7- Three identical spin ½ fermions are to be distributed in two non-degenerate distinct energy level. The number of ways this can be done is ______.
- 8- A random walker takes a step of unit length in the positive direction with probability 2/3 and a step of unit length in the negative direction with probability 1/3. The mean displacement of the walker after 'n' step is,
 - (a) n/3 (b) n/8 (c) 2n/3 (d) n/16
- 9- When a collection of two level system is in equilibrium at temperature T₀, the ratio of population in the lower and upper level is 2:1. When the temperature is changed to T the ratio is 8:1. Then,
 - (a) $T=2T_0$
 - (b) $T_0=2T$
 - (c) $T_0=3T$
 - (d) $T_0=4T$
- 10- If V_{avg} , V_p and V_{rms} denote the average, most probable and root mean square values respectively of the molecular speeds of gas at room temperature being Maxwellian velocity distribution, then,
 - (a) $V_{avg} < V_p < V_{rms}$
 - $(b) \quad V_{rms} < V_{avg} < V_p$
 - $(c) \quad V_{rms} < V_p < V_{avg}$
 - $(d) \quad V_p \, < V_{avg} \, < V_{rms}$
- 11- Which of the following is an example of a first order phase transition,
 - (a) A liquid-gas phase transition at the critical point
 - (b) A paramagnet-ferromagnet phase transition
 - (c) A normal metal-superconductor phase transition
 - (d) A liquid gas phase transition away from critical point

- 12- A heat pump working on the Carnot cycle maintains the inside temperature of a house at 22 degree C by suppling 450 KJS⁻¹. If the outside temperature is zero degree C, the heat taken in KJS⁻¹, from the outside air is approximately,
 - (a) 487 (b) 470 (c) 467 (d) 417
- 13- An ideal gas undergoes an isothermal expansion (at a constant temperature T) from an initial volume C to a final volume V₂. The change in the entropy per mole is,
 - (a) $R(V_1/V_2)$
 - (b) $R \ln |V_1-V_2|$
 - (c) R $\ln (V_1/V_2)$
 - (d) R $\ln (V_2/V_1)$
- 14- Consider a linear collection of N independent spin ½ particles, each at fixed location. The entropy of the system is (k is the Boltzmann constant)
 - (a) Zero (b) Nk (c) $\frac{1}{2}$ Nk (d) Nk ln(2)
- 15- A two level system has energies zero and E. The level with zero energy is non-degenerate, while the level with energy E is triply degenerate. The mean energy of classical particle in this system at a temperature T is,
 - (a) $\frac{Ee^{-E/k_BT}}{1+3e^{-E/k_BT}}$
 - (b) $\frac{Ee^{-E/k_BT}}{1+e^{-E/k_BT}}$
 - (c) $\frac{3Ee^{-E/k_BT}}{1+e^{-E/k_BT}}$
 - (d) $\frac{3Ee^{-E/k_BT}}{1+3e^{-E/k_BT}}$